Python, numerical optimization, genetic algorithms

Davide Rizzo
PyCon Italia Quattro

daviderizzo.net
Optimization

• Actually *operations research*
 ▫ Mathematical optimization is the tool
• Applied maths
 ▫ Major academic and industrial research topic
• Computationally oriented
 ▫ Many commercial solutions
 ▫ Yes, you can use Python
• Not code optimization!
Operations research applications

• Airlines
 ▫ scheduling planes and crews, pricing tickets, taking reservations, and planning fleet size

• Logistics
 ▫ routing and planning

• Financial services
 ▫ credit scoring, marketing, and internal operations

• Deployment of emergency services

• Policy studies and regulation
 ▫ environmental pollution, air traffic safety, AIDS, and criminal justice policy
More operations research applications

• Project planning
• Network optimization
• Resources allocation
• Supply chain management
• Automation
• Scheduling
• Pricing
Optimization problem

• Many decision variables
 ▫ How should I price my new products?
 ▫ How many server resources should I assign to each client?

• An objective
 ▫ Maximize net profit
 ▫ Minimize client waiting time
Objective function

- **Objective**: find the best choice for the decision variables
 - the values that give the maximum yield (or the minimum cost)
- **Objective function**: the yield (or the cost) I get for a given choice
Decisions and objectives

• I buy 100kg flour at 50€
 ▫ Want to decide how to use it
• 70kg -> bread, 30kg -> cookies
 ▫ Decision variables
 • $X = 70, 30$
• Sell 105€ of bread and 75€ of cookies
 ▫ Objective function value:
 • $f(X) = 105 + 75 - 50 = 130€$
Visualizing the problem
Constraints

- Not every solution is good
- 100kg flour → can’t use 150kg for bread
 - flour_bread + flour_cookies ≤ 100
Constraints

- Inequalities often describe constraints
- Many constraints
 - There are problems with thousands inequalities
- Limited sugar
 - 1 part sugar, 3 parts flour
 - 20 kg sugar available
 - flour_cookies < 60
Search vs. optimization

<table>
<thead>
<tr>
<th>Search algorithms</th>
<th>Optimization algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Well-known among programmers</td>
<td>• Broader class of problems</td>
</tr>
<tr>
<td>• Include tree-search and graph-search algorithms</td>
<td>▫ Includes search problems</td>
</tr>
<tr>
<td>• Work on a discrete search space</td>
<td>▫ Continuous search space</td>
</tr>
<tr>
<td></td>
<td>▫ Discrete as a special case</td>
</tr>
<tr>
<td></td>
<td>• Search algorithms used to solve many optimization problems</td>
</tr>
</tbody>
</table>
Numerical optimization

Finding the optimum in linear and non-linear problems with exact methods
Objective function classification

• General theory for every problem
 ▫ Very good results for simple problems

• Objective function structure
 ▫ Smoothness and regularity determine complexity
 ▫ Good guarantees for linear functions
 ▫ No exact results if irregular

• Factors other than objective functions
 ▫ Constraints
 ▫ Integrality on variables
A greater number of variables does not complicate matters!
Linear

- **Linear objective function**
 - \(c_0 + \sum (c[i] \times x[i] \text{ for } i \text{ in range(len(vars)))} \)

 \[
 f(x) = c_0 + \sum_{i} c_i x_i
 \]

- **Bakery example**

  ```python
  vars = ['flour_bread', 'flour_cookies']
  c = [1.5, 2.5]; c0 = -50
  >>> obj_fun([70, 30])
  130.0
  ```
Non-linear “smooth”

![Graph showing a non-linear smooth function](image-url)
Non-linear “smooth”

- Non-linearity raises some issues
- Function must be “smooth” enough
 - You can stand on any point of the curved surface and assume you are on a plane
- No guarantee to find global optimum
Non regular function
Non smooth function
Gradient descent

- Pick a point
- Pretend you are on a line
 - Can choose the optimal direction at each point
- Take steps until you fall in an optimum
 - Local optimum!
No smoothness?

- Any other formulation for the problem?
 - Decrease model complexity
 - Put complexity in constraints
- Settle for an approximate solution
- Global search heuristics
 - Genetic algorithms are an example
SciPy optimization package

- Non-linear numerical function optimization
- `optimize.fmin(func, xo)`
 - Unconstrained optimization
 - Finds the minimum of `func(x)` starting `x` with `xo`
 - `x` can be a vector, `func` must return a float
- Better algorithm for many variables: `fmin_bfgs`
- Algorithms for constrained optimization
Give me the code!

- `from scipy import optimize`

```python
def f(x):
    return x[0]**2 + (x[1]-2)**2

print optimize.fmin(f, [0,0])
```

- Optimization terminated successfully.
 - Current function value: 0.000000
 - Iterations: 63
 - Function evaluations: 120
 - [-4.04997873e-06 2.00004847e+00]
Many variables

- `from scipy import optimize`
 `from numpy import array`
 `from random import uniform`

```python
n = 50
center = array([[uniform(0, 10) for i in range(n)]]

def f(x):
    return sum((x - center)**2)

optimum = optimize.fmin_bfgs(f, [0]*n)
print optimum - center
```
Optimization terminated successfully.
 Current function value: 0.000000
 Iterations: 3
 Function evaluations: 312
 Gradient evaluations: 6

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.09850102e-08</td>
<td>1.00864010e-08</td>
<td>-3.44023343e-09</td>
<td>1.45686556e-08</td>
<td></td>
</tr>
<tr>
<td>1.95572314e-09</td>
<td>1.63218594e-09</td>
<td>3.37632766e-09</td>
<td>1.44865293e-08</td>
<td></td>
</tr>
<tr>
<td>1.52201984e-08</td>
<td>1.29321513e-08</td>
<td>-1.59485092e-09</td>
<td>1.23136292e-08</td>
<td></td>
</tr>
<tr>
<td>1.62830638e-08</td>
<td>-3.52261820e-09</td>
<td>-5.56838653e-09</td>
<td>1.24844490e-08</td>
<td></td>
</tr>
<tr>
<td>8.54035953e-09</td>
<td>1.55625752e-08</td>
<td>8.50658477e-09</td>
<td>1.08354117e-08</td>
<td></td>
</tr>
<tr>
<td>1.62710236e-08</td>
<td>-3.44068374e-09</td>
<td>-5.63388847e-09</td>
<td>1.13670406e-09</td>
<td></td>
</tr>
<tr>
<td>1.14938468e-08</td>
<td>-1.92982030e-09</td>
<td>-1.66206160e-09</td>
<td>-1.50014312e-09</td>
<td></td>
</tr>
<tr>
<td>1.12226592e-08</td>
<td>-5.60273883e-09</td>
<td>3.07106607e-09</td>
<td>6.95412705e-09</td>
<td></td>
</tr>
<tr>
<td>-4.58609706e-09</td>
<td>1.24199513e-08</td>
<td>-5.76112080e-09</td>
<td>-7.69927677e-10</td>
<td></td>
</tr>
<tr>
<td>-6.56263044e-10</td>
<td>-6.08281736e-09</td>
<td>1.10073151e-08</td>
<td>3.35045769e-09</td>
<td></td>
</tr>
<tr>
<td>-1.25477273e-09</td>
<td>5.98582162e-09</td>
<td>-5.60075986e-10</td>
<td>1.00968194e-08</td>
<td></td>
</tr>
<tr>
<td>-1.23273258e-09</td>
<td>-2.11921281e-09</td>
<td>-6.40983949e-09</td>
<td>8.99856101e-09</td>
<td></td>
</tr>
<tr>
<td>-1.08943476e-09</td>
<td>1.55362354e-08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Microeconomics model example

- Pricing problem for two products
 - Choose the prices that give the best profit
- Assume to know demand curves
 - From buyer’s utility maximization
- Could be generalized
 - Many products
 - Complex demand curves
 - Complex costs and economies of scale
 - Beware of non smooth functions!
Microeconomics model example

```python
def profit(p1, p2):
    x1 = demand1(p1, p2)
    x2 = demand2(p1, p2)
    income = x1*p1 + x2*p2
    cost = costf(x1, x2)
    return income - cost

def demand1(p1, p2):
    return 20*(20 - p1)

def demand2(p1, p2):
    return 40*(40 - p2)

def costf(x1, x2):
    c1 = 10*(x1**0.5)
    c2 = 20*(x2**0.5) + 2*x2
    cbase = 1000 + 5*(x1 + x2)
    return c1 + c2 + cbase
```

```python
from scipy import optimize

def objective(x):
    return -profit(*x)

price = optimize.fmin(objective, [1, 1])

print 'prices:', price
print 'amounts:'
print demand1(*price), demand2(*price)
```
Microeconomics model results

Optimization terminated successfully.
Current function value: -10381.085398
Iterations: 63
Function evaluations: 122
prices: [12.7070282 23.69579991]
amounts: 145.859435961 652.168003412
Linear programming problem

- Linear objective function
 - Weighted sum of variables
- Constraints are linear inequalities
 - Weighted sum of some variables \(\leq 0 \)
- Variables can also be integer or binary
 - Mixed integer programming
 - NP-complete
Back to the bakery

- $\text{max } c_1x_1 + c_2x_2$
- subject to
 - $x_1 + x_2 \leq 100$
 - $x_2 \leq 60$
GNU Linear Programming Kit

• C library for linear programming
 ▫ Bindings for many languages

• Solver for large-scale problems
 ▫ Linear programming
 ▫ Mixed integer programming

• GNU MathProg modeling language
 ▫ Subset of the AMPL proprietary language
PyMathProg

- Pure Python modeling language
 - Model described with natural Python operators
- Easy integration in the process workflow
- Interface to GLPK solver
PyMathProg bakery

```python
import pymprog

# inits a model
m = pymprog.model('bakery')

# defines two named variables
x = m.var(range(2), 'x')

# objective function
m.max(1.5*x[0]+2.5*x[1])

# constraints
m.st(x[0]+x[1]<=100)
  m.st(x[1]<=60)

m.solve()
print x
{0: x[0]=40.000000, 1: x[1]=60.000000}
```
Binary variables: Sudoku

p = pymprog.model("sudoku")
I, J, K = range(9), range(9), range(1, 10)
T = pymprog.iprod(I, J, K) #create Indice tuples
x = p.var(T, 'x', bool)
#x[i,j,k] = 1 means cell [i,j] is assigned number k
#assign pre-defined numbers using the "givens"
p.st([+x[i,j,k] == (1 if g[i][j] == k else 0)
 for (i,j,k) in T if g[i][j] > 0], 'given')

#each cell must be assigned exactly one number
p.st([sum(x[i,j,k] for k in K)==1 for i in I for j in J], 'cell')

#cells in the same row must be assigned distinct numbers
p.st([sum(x[i,j,k] for j in J)==1 for i in I for k in K], 'row')

#cells in the same column must be assigned distinct numbers
p.st([sum(x[i,j,k] for i in I)==1 for j in J for k in K], 'col')

#cells in the same region must be assigned distinct numbers
p.st([sum(x[i,j,k] for i in range(r,r+3) for j in range(c, c+3))==1
 for r in range(0,9,3) for c in range(0,9,3) for k in K], 'reg')
CLV model example

- Marketing problem
- Potential and acquired customers
 - Lifetime value (expected cash flow)
 - Sensibility to promotions
- Limited budget for promotions
- Choose promotions as to maximize the total cash flow
CLV model example code

BUDGET = 5000

model
m = pymprog.model('clv')

y = m.var(customers, 'y', bool)
x = m.var(c_p, 'x', bool)

m.max(sum(CLV[c]*y[c] for c in customers) -
 sum(C[p]*sum(x[c,p] for c in customers) for p in promos))

m.st(sum(x[c,p]*C[p] for c, p in c_p) <= BUDGET)
for c in customers:
 m.st(y[c] <= sum(x[c,p]*S[c][p] for p in promos))

m.solve()
CLV with activation costs

\[y = m.\text{var}(\text{customers}, \ 'y', \ \text{bool}) \]
\[x = m.\text{var}(c_p, \ 'x', \ \text{bool}) \]
\[z = m.\text{var}(\text{promos}, \ 'z', \ \text{bool}) \]

\[m.\text{max}(\sum(\text{CLV}[c] \cdot y[c] \ \text{for} \ c \ \text{in} \ \text{customers}) - \sum(C[p] \cdot \sum(x[c,p] \ \text{for} \ c \ \text{in} \ \text{customers}) \ \text{for} \ p \ \text{in} \ \text{promos}) - \sum(CP[p] \cdot z[c] \ \text{for} \ p \ \text{in} \ \text{promos})) \]

\[m.\text{st}(\sum(x[c,p] \cdot C[p] \ \text{for} \ c, \ p \ \text{in} \ c_p) \leq \text{BUDGET}) \]
\[m.\text{st}([[y[c] \leq \sum(x[c,p] \cdot S[c][p] \ \text{for} \ p \ \text{in} \ \text{promos})]) \ \text{for} \ c \ \text{in} \ \text{customers}}) \]
\[m.\text{st}([[z[c] \leq \sum(x[c,p] \ \text{for} \ c \ \text{in} \ \text{customers}) \ \text{for} \ p \ \text{in} \ \text{promos}}]) \]
Genetic algorithms

«Take a bunch of random solutions, mix them randomly, repeat an undefined number of times, get the optimum»
Genetic algorithms

• Biological metaphor for an optimization technique
 ▫ Individual = proposed solution
 ▫ Gene = decision variable
 ▫ Fitness = objective function

• Natural selection-like
 ▫ The most fit individuals breed
 ▫ The children are similar to the parents
 ▫ Every generation better than the previous one
Individuals and genomes

• Genetic representation of the solution
 ▫ How do the genes map to the solution?
 ▫ Historically as a string of bits
 ▫ Many alternatives: numbers, lists, graphs

• Genetic operators
 ▫ How are children different from parents?
 ▫ Crossover and mutation

• Fitness function
 ▫ Just like the objective function
The simple genetic algorithm

• Randomly generate a population of individuals
• Repeat until I get a good enough solution
 ▫ Select the individuals with highest fitness
 ▫ Discard the least-fit ones
 ▫ Generate children from crossover and mutation
• Termination condition not always well defined
Some genome encodings

- **Binary string encoding**
 - Fixed length, each bit maps to a binary feature
 - Crossover splits the string
 - Mutation inverts a random bit
 - Example: knapsack problem

- **Sequence encoding**
 - Fixed elements, the order maps to the solution
 - Crossover splits the sequence
 - Mutation exchanges two elements
 - Example: travelling salesman problem
Single point crossover

Parent 1:
010110100 1110

Parent 2:
101101111 0100

Crossover point:

Offspring:
010110100 0100
101101111 1110
Example: knapsack problem

MY HOBBY:

EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT

- **APPETIZERS**
 - Mixed Fruit: 2.15
 - French Fries: 2.75
 - Side Salad: 3.35
 - Hot Wings: 3.55
 - Mozzarella Sticks: 4.20
 - Sampler Plate: 5.80

- **SANDWICHES**
 - Barbecue: 6.55

WE'D LIKE EXACTLY $15.05 WORTH OF APPETIZERS, PLEASE.

... EXACTLY? UHH ...

HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIX OTHER TABLES TO GET TO —

— AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?
Knapsack problem

- Binary string encoding
 - One bit for each item
- Fitness = value of the knapsack
 - Zero if not fitting (is there a better way?)
- Single point crossover
- Simple mutation
GAs pros and cons

- Very easy to implement
- Quite easy to get right
- Good at problems where exact methods fail
- Relatively very slow
- Don’t scale well
- Not well defined end condition
Summing up

• Non-linear programming
 ▫ scipy.optimization
• Linear and integer programming
 ▫ GLPK and PyMathProg
• Global search heuristics
 ▫ Genetic algorithms
• Get updates!
 ▫ http://daviderizzo.net/blog/
Questions?